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biochemical investigations.3-5 Endoscopic evaluation defines 

the location and pattern of inflammation (e.g., segmental or 

continuous, mild or severe) and can also identify noninflam-

matory pathology (e.g., dysplasia).3 Endoscopic and histologic 

improve ments correlate with better outcomes and are treat-

ment targets in the management of IBD.6,7 Using an inflam-

matory pathway-based approach to inform treatment deci-

sions may be more useful than classifying disease by organ 

involvement alone.8 

The complexity of IBD management lends itself to artificial 

intelligence (AI) as a means of improving clinical practice 

(Fig. 1).3 Comprised of machine learning, deep learning, and 

neural networks, AI can help optimize IBD diagnosis, refine 

assessment of macroscopic and microscopic disease severity, 

and improve disease monitoring.9-11
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improving disease management by predicting treatment response to biologic therapies and for refining the standard of care by 
setting the basis for future treatment personalization and cost reduction. The purpose of this review is to provide an overview of 
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REVIEW

INTRODUCTION

Inflammatory bowel disease (IBD) is a global disease with 

over 6.8 million cases worldwide reported in 2017, represent-

ing an 85% increase in prevalence since 1990.1 IBD is a debili-

tating condition that involves recurring or chronic inflamma-

tion of the gastrointestinal tract and encompasses Crohn’s 

disease (CD) and ulcerative colitis (UC). Currently, there is 

no single diagnostic criterion.2 Instead, diagnosis and assess-

ment of disease severity require a combination of a patient’s 

history, examination, endoscopic, histologic, radiologic, and 
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ENDOSCOPY AND HISTOLOGY IN IBD  
CLINICAL ASSESSMENT: CURRENT USE  
AND UNMET NEEDS

Data collected from endoscopic and histologic assessments 

are used by physicians to determine the severity of IBD. Nev-

ertheless, protocols are not standardized. Implementation of 

protocols may reflect lack of expertise, which presents an op-

portunity to develop AI tools, including histological scores, 

that may optimize IBD assessment. 

1. Endoscopy
Endoscopic evaluation of IBD identifies inflammation, char-

acterizes lesions, and assesses mucosal healing, but challeng-

es remain.10 Visual evaluation of the mucosa relies on human 

interpretation, which is inherently subjective.3,12 The quality of 

endoscopy is dependent on the operator and training.13 Endo-

scopic expertise varies greatly, which is especially important 

in parts of the world where IBD is emerging while experience 

and equipment are limited. 

Since therapy is influenced by endoscopic assessment,7,13 

interobserver variability contributes to inferior patient out-

comes.12,14 Scoring of disease severity is only semi-quantitative 

and not often practiced.15 For example, variability in endo-

scopic scoring among 58 gastroenterologists revealed an in-

terrater agreement of only 0.47 for Mayo endoscopic subscore 

ratings in patients with UC and 0.33 for Rutgeerts score in pa-

tients with CD.14 Based on this variability, study authors esti-

mated that one-third of patients would be managed different-

ly based on endoscopic data alone. In another study, novel 

computer vision-enabled endoscopic disease distribution 

measures were able to better detect the significant therapeutic 

effect of ustekinumab over placebo in UC compared with tra-

ditional endoscopic scoring instruments.15 This illustrates that 

objective computer-aided activity measures may improve en-

doscopic IBD data quality by refining therapeutic efficacy as-

sessment compared with conventional scoring, enhancing ef-

ficiency in clinical trials and revamping therapeutic disease 

monitoring in the care of UC. 

2. Histology
In the last few decades, endoscopic remission was considered 

the most important treatment target. However, in recent years 

it was learned that microscopic inflammation is seen in 16% 

to 100% of biopsies from colonic mucosa of patients with en-

doscopic healing. Furthermore, in patients with UC, persistent 

histologic inflammation can exist in the presence of endo-

scopic mucosal healing and is associated with increased risks 

of dysplasia. In a retrospective study, a computer-aided diag-

nosis (CADx) system predicted persistent histologic inflam-

mation in patients with UC using endocytoscopic images with 

an accuracy of 91.0%, a sensitivity of 74.0%, and a specificity of 

Fig. 1. Potential applications of artificial intelligence (AI) in inflammatory bowel disease diagnosis and management.3 CD, Crohn’s disease; 
UC, ulcerative colitis.
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97.0%.16 Therefore, endoscopic healing alone is limited in pre-

dicting long-term disease outcomes.6 

Histologic remission is associated with a sustained clinical 

remission and a lower risk of colectomy or colorectal cancer, 

and is recognized as a potential new therapeutic target.6 How-

ever, mucosal biopsies involve arbitrary decisions on biopsy 

location and delays in pathologist reading, and are invasive 

and costly. Optical biopsy, such as confocal laser endomicros-

copy with higher magnification and resolution of the mucosa, 

is appealing since it has been shown to predict histologic in-

flammation and outcomes.17 Nevertheless, as with endoscopy, 

such techniques depend on the operator and human interpre-

tation, and remain vulnerable to interobserver variation.16

Consequently, there has been growing evidence that sup-

ports the use of histological scoring systems in IBD. Several 

scores have been developed and include the Robarts histopa-

thology index and the Nancy index, the only 2 scores recom-

mended by the European Crohn’s and Colitis Organisation for 

use in patients with UC.18 Most scores for CD have not been 

validated due to their complexity and the discontinuous na-

ture of lesions in CD. However, the recent guidelines support 

the adoption of the same scoring systems for CD and UC as 

the main histological features of UC and CD activity are 

shared, and the recent evidence demonstrates that UC and CD 

responses to treatment can be interchangeably measured.18

ROLE OF AI IN IBD CLINICAL PRACTICE

AI can support physicians managing patients with IBD in mak-

ing more informed, real-time treatment decisions during en-

doscopy and in assessing histopathology. Applications of AI 

exist at multiple points in the patient care pathway, including 

increasing procedure quality, differentiating between CD and 

UC, assessing disease severity, assessing histologic severity 

and remission, and identifying bleeding sources, among oth-

ers (Fig. 2).10,19

1. Opportunities for AI in IBD Assessment
1) Procedure Quality 

Recently, there has been much focus on quality of colonosco-

py in IBD. In 2022, the European Society of Gastrointestinal 

Endoscopy released guidelines on performance measures for 

colonoscopy in IBD, including general measures such as bow-

el preparation and cecal and ileal intubation; endoscopic eval-

uation of disease activity, with the use of validated scores; and 

colonoscopic surveillance for dysplasia.20 AI can assist endos-

copists in real time, including decreasing sampling errors, as-

sisting with photodocumentation to improve the complete-

ness of examinations, preventing missed blind spots, and 

monitoring quality metrics, thus enabling endoscopists to fo-

cus on areas of interest.21 Such improvements in procedure 

quality may optimize both the current daily practice of and 

training in IBD assessment, ultimately leading to optimized 

patient care. 

Examination quality metrics incorporated into machine-

learning algorithms prevent poor-quality videos by alerting 

the endoscopist in real time to issues that would otherwise re-

quire the patient to return for re-evaluation. An algorithm to 

detect and alert the endoscopist to missed areas in real time 

demonstrated agreement with the physician reviewer in 93% 

Fig. 2. Potential benefits of the application of artificial intelligence in inflammatory bowel disease clinical practice. CT, computed tomog-
raphy; MR, magnetic resonance. Modified from Seyed Tabib NS, et al. Gut 2020;69:1520-1532.10
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of cases.22 AI can identify blood or stool as well as alert the en-

doscopist if they are moving too quickly through the examina-

tion, thus helping reduce the chance for blind spots. A set of 

5,476 images from 2,000 colonoscopy patients was used to 

train a deep convolutional neural network (CNN) model to 

assess bowel preparation every 30 seconds during the with-

drawal phase, providing the endoscopist with a real-time, ac-

curate (accuracy range, 80.0%–93.3%) method for evaluating 

bowel preparation.23 AI can also be used to quantify the per-

centage of colonic surface area visualized, report on the clarity 

of the endoscopic view,24 and identify artefacts and restore 

corrupted visual data.25 A CNN model detected and classified 

visual artefacts, generated a quality score for each video frame 

in nearly real time, and restored, on average, 25% of video 

frames in a dataset of 1,290 endoscopy images.25 

2) Distinguishing CD versus UC

AI can improve the ability to discriminate CD from UC.3 One 

study investigated deep-learning classifiers for processing 

gene-expression data in IBD, combining a deep neural net-

work with a support vector machine.26 The deep-learning sys-

tem distinguished CD from UC with 95.0% accuracy. Support 

vector machines have also been used to create spectral histo-

pathology, an automatic calculation of tissue morphology 

from Raman spectroscopy, that can reveal the same morpho-

logical information as a classic hematoxylin and eosin stain-

ing.27 In a second step, this support vector machine used Ra-

man spectral signatures to differentiate IBD subtypes with an 

accuracy of 98.9%. In another example, a natural language 

processing algorithm using random forest and CNN approach-

es discerned among patients with CD, UC, and intestinal tu-

berculosis using a description of the endoscopic image in the 

form of free text.28 This approach distinguished CD from UC 

with an area under the curve of 0.936, a sensitivity of 0.890, 

and a specificity of 0.837.

3) Capsule Endoscopy

A deep-learning framework was evaluated for its ability to de-

tect CD lesions in the small bowel and colon, determine lesion 

localization, and assess lesion severity using images collected 

with pan-enteric capsule endoscopy.29 A total of 7,744 images 

from 38 patients with suspected or known CD were included, 

and the automated framework detected ulcerations consis-

tent with CD with 95.7% sensitivity, 99.8% specificity, and di-

agnostic accuracy of 98.4%, demonstrating high efficiency and 

robustness. In addition, the diagnostic accuracy was similar 

for ulcerations located in the small bowel (98.5%) and colon 

(98.1%). 

4) Assessment of Disease Remission 

Computer-assisted support systems can assess IBD disease 

activity, and the standardization of image capturing will im-

prove the accuracy of algorithms in reflecting clinical scenari-

os.19 Deep-learning models can accurately identify remission 

using the Mayo endoscopic score (MES). Recently, a CAD 

model discriminated between endoscopic mucosal healing 

(MES 0, 1) and non-mucosal healing (MES 2, 3) with 94.5% 

accuracy, 84.6% sensitivity, and 96.9% specificity.30 An auto-

mated MES scoring system that used a CNN model distin-

guished remission (MES 0, 1) versus active disease (MES 2, 3) 

in 84% (221 of 264) of videos.31 The model also identified in-

formative versus noninformative images with an area under 

the curve of 0.961. A deep-learning CADx system was devel-

oped to mimic the assessment done by a gastroenterologist: 

colonoscopy image assessment, lesion identification, and 

Mayo score generation. Based on an evaluation of 1,672 endo-

scopic videos, the system achieved high accuracy with an area 

under the curve of 0.84 for a Mayo subscore ≥ 1, 0.85 for a sub-

score of ≥ 2, and 0.85 for a subscore of ≥ 3.32 

AI can infer pathologic activity from endoscopic image 

analysis. In a prospective study of 875 patients with UC, a 

deep neural network assessed endoscopic images for endo-

scopic and histologic remission with 90.1% and 92.9% accura-

cy, respectively, allowing for the identification of remission 

without the need for mucosal biopsy.33 Histologic remission is 

the best predictor of long-term outcomes in patients with UC, 

but histopathology scoring is cumbersome. Red density is an 

operator-independent tool that uses machine learning to cal-

culate a score based on red pixel values and vascular pattern 

detection in endoscopic images.34 The red density algorithm 

was optimized to correlate with endoscopic and histologic 

disease activity. In a validation study, the algorithm showed a 

significant correlation with Robarts histopathology index 

(r = 0.65, P < 0.0001), the Ulcerative Colitis Endoscopic Index 

of Severity (r = 0.56, P = 0.0004), and MES (r = 0.61, P < 0.0001). 

While the red density score needs further validation, it is a 

promising new tool that provides objective operator-indepen-

dent digital scoring of endoscopic and histologic disease. In 

practical terms, AI-assisted assessment of endoscopic findings 

that correlate with histopathology will improve the predictive 

value of endoscopy and reduce the need for invasive and cost-

ly biopsy procedures. 
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2.  Opportunities for AI to Support Clinical Management 
of IBD

AI can provide decision support to optimize the treatment of 

patients with IBD through predicting response to treatment or 

the need for surgery. AI that predicts treatment outcomes can 

aid in clinical decision-making related to patient selection, 

switching treatment, and determining response or relapse. 

Both therapeutic response and lack of response are useful in-

sights into the efficacy of an intervention.35 Machine learning 

can predict patient responses to treatment based on clinical 

data. For patients with UC, vedolizumab is an effective thera-

py with clinical improvements continuing after 30 weeks, al-

beit slow to produce clinical results. Using phase 3 clinical trial 

laboratory results up to week 6, a machine-learning model 

predicted corticosteroid-free endoscopic remission at week 

52, with an area under the curve of 0.73 (95% confidence in-

terval [CI], 0.65–0.82).35 In another study, machine learning 

predicted the efficacy of vedolizumab at week 22 in patients 

with UC using clinical data collected at baseline.36 The model 

revealed high negative predicted value (92.3%) for corticoste-

roid-free clinical remission with vedolizumab, indicating that 

other treatment options might be considered.36 For patients 

with CD, a machine-learning model predicted response to 

ustekinumab treatment beyond week 42, with an area under 

the curve of 0.78 (95% CI, 0.69–0.87), using laboratory data up 

to week 8 from three phase 3 clinical trials.37 Predicting the 

probability of nonresponse after a short trial is valuable as pa-

tients can quickly switch therapies, aiding in overall disease 

management and decreasing costs. 

Furthermore, machine-learning approaches can aid in per-

sonalizing medication dosing. Thiopurines are widely used 

immunomodulators for the treatment of UC and CD; howev-

er, dose optimization is difficult, with physicians relying on 

patterns in the complete blood count to monitor clinical re-

sponse and titrate dosing. In one study, machine-learning al-

gorithms predicted thiopurine response from age and labora-

tory data (area under the curve of 0.79 compared with 0.49 

with 6-thioguanine nucleotide metabolite measurement).38 In 

another study, a neural network predicted the need for sur-

gery after cytapheresis therapy in UC with a sensitivity of 0.96 

and specificity of 0.97.39

Therapies that neutralize tumor necrosis factor (TNF) are 

efficacious in the treatment of IBD; however, many patients 

do not respond to anti-TNF therapy and are exposed to side 

effects such as infections, skin disorders, and lupus-like auto-

immunity.40 AI can predict anti-TNF therapeutic responders, 

enhancing the safety and cost effectiveness of this treatment. 

Fecal calprotectin measurements taken after induction of anti-

TNF therapy (infliximab) were used to predict clinical response 

and endoscopic remission (mucosal healing) after 1 year.41 

Clinical response was predicted with 83.0% sensitivity and 

74.0% specificity; mucosal healing was predicted with 79.0% 

sensitivity and 57.0% specificity. A neural network machine-

learning model used baseline parameters to predict UC dis-

ease activity and risk of relapse at 1-year with anti-TNF thera-

py (infliximab/adalimumab). The model demonstrated excel-

lent performance with 90.0% accuracy on the test set and 100.0% 

accuracy on the validation set.42 In another study, confocal la-

ser endomicroscopy was used for in vivo molecular imaging 

of membrane-bound TNF (mTNF) expressing cells in the gas-

trointestinal mucosa of patients with CD.40 The investigators 

found patients with a high number of mTNF-positive cells in 

the colon had significantly higher probability of clinical re-

sponse to anti-TNF therapy compared with patients who had 

a low number of mTNF-positive cells (92.0% vs. 15.0%). 

IBD pathogenesis involves environmental, genetic, microbi-

al, and immune factors, thereby warranting a comprehensive 

approach to care. The integration of omics data into clinical 

practice using AI can provide personalized medicine in real 

time to improve quality of care and patient outcomes.10,43 A 

machine-learning model predicted endoscopic response to 

ustekinumab in patients with CD by integrating genomics and 

transcriptomics data.44 The study identified 10- and 15-feature 

transcriptomic and genomic panels, respectively, that can pre-

dict endoscopic response to therapy. Additionally, multi-

omics profiling can identify proteomic, metabolomic, and mi-

crobial biomarkers associated with relapse in patients with 

quiescent IBD.45 CDPATH is a patient-facing web-based pro-

gram that uses biomarkers and clinical data to create a person-

alized prediction of CD prognosis over a 3-year period.46 By 

stratifying low-, medium-, and high-risk patients, treatment es-

calation can be tailored to individual patients. CDPATH allows 

both providers and patients to visualize individualized risks of 

complications over time, facilitating patient empowerment 

and shared decision-making. Recently, an algorithm- and bio-

marker-based test, called the endoscopic mucosal healing in-

dex (EHI), was developed to identify patients with CD in endo-

scopic remission and measures 13 proteins in the blood, en-

compassing 6 categories of mucosal healing.47 The biomarkers 

include C-reactive protein and SAA1 (inflammation); ANG1 

and ANG2 (angiogenesis); MMP1, MMP2, MMP3, MMP9, and 

EMMPRIN (matrix remodeling); TGFα (proliferation and re-
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pair growth factor); IL-7 (immune recruitment modulation); 

and CEACAM1 and VCAM1 (cell adhesion). The EHI test 

demonstrated favorable accuracy for identifying endoscopic 

inflammation and reasonable diagnostic accuracy for identify-

ing histologic inflammation. In addition, EHI performance was 

comparable to fecal calprotectin and superior to C-reactive 

protein.

Another opportunity for AI in IBD management resides 

with wearable devices with biosensors that can correlate daily 

function with disease activity in IBD patients and play a role in 

disease management.48 Fitbit metrics, including daily steps, 

heart rate, and sleep data, were collected from 56 patients 1 

week prior to a disease assessment. During the assessment, 

clinical visit data, C-reactive protein and fecal calprotectin val-

ues, and colonoscopy data were obtained. A total of 132 dis-

ease assessments were obtained, with 66 assessments show-

ing active disease and 66 showing quiescent disease. Patients 

with active disease had fewer daily steps compared with pa-

tients with quiescent disease (6,331 steps vs. 8,241 steps, re-

spectively; P < 0.001). Daily number of steps was predictive of 

elevated biomarkers of inflammation, with an area under the 

curve of 0.65 (95% CI, 0.61–0.69).

ROLE OF AI ACROSS DISCIPLINES

Medical imaging, including pathology, radiology, and endos-

copy, has been an early adopter of AI across disciplines.12 

1. Pathology
AI can recognize regions of interest in histology slides. A multi-

instance, deep-learning network model designed for whole 

slide image classification identified gastric cancer with an 

86.5% accuracy using a dataset of 608 images.49 AI algorithms 

designed for colorectal cancer can distinguish normal tissue, 

hyperplasia, adenoma, adenocarcinoma, and histologic sub-

types of polyps or adenocarcinomas.11 For example, a deep-

learning model classified colorectal polyp subtypes (i.e., hy-

perplastic, sessile serrated, traditional serrated, tubular, and 

tubulovillous/villous) in a set of 239 whole slide images with 

an accuracy of 93.0%.50 Another deep neural network classi-

fied the 4 most common colorectal polyp types with an accu-

racy of 87.0%, which was comparable with that of local pathol-

ogists (86.6%).51 Using a murine model of gut inflammation, 

researchers trained a deep-learning algorithm to recognize 

key features of inflamed and noninflamed mucosa from mi-

croscopic images of pathological sections.52 

AI applications have utility in breast cancer pathology for ra-

re-event identification, tumor percentage calculation, and mi-

tosis detection, all of which are time consuming and suscepti-

ble to interobserver variability.53 Deep-learning algorithms de-

signed to detect lymph node metastases in tissue sections 

from women with breast cancer found the algorithms outper-

formed a panel of pathologists in a simulated time-constrained 

diagnostic setting (area under the curve of 0.99 for the best al-

gorithm vs. 0.88 for the best pathologist).54 In another study, a 

supervised deep-learning model for mitosis detection from 

whole slide images was trained using handcrafted features 

(morphological, textural, and intensity features) extracted 

from datasets of previous AI medical challenges and reported 

high precision (92.0%), recall (88.0%), and F-score (90.0%).55

2. Radiology 
AI is used in radiology for screening, disease classification, 

and disease characterization. Computer-aided detection 

(CADe) systems help analyze screening mammograms by 

marking suspicious regions for further review. Improvements 

upon this technology include a CADe system based on deep 

CNNs to classify malignant or benign lesions in mammo-

grams.56 This system reported an area under the curve of 0.95 

with high sensitivity (0.9) and low false-positive rate (0.3 false-

positive marks per image) compared with commercially avail-

able systems (up to 1.25 false-positive marks per image). The 

utility of AI in reducing workload was explored in a retrospec-

tive evaluation consisting of 15,987 mammograms from the 

Córdoba Tomosynthesis Screening Trial and found AI-sup-

ported breast cancer screening strategies could reduce work-

load by up to 70.0% without reducing cancer detection.57 Com-

pared with the original double reading of digital mammogra-

phy images, AI-based digital tomography screening was asso-

ciated with a 29.7% reduction in workload, a 25.0% improve-

ment in sensitivity, and a 27.1% reduction in recall rate.

3. Endoscopy
CADe and CADx models used to detect polyps have improved 

procedure performance.19 A deep-learning CADe system de-

veloped for real-time use in clinical practice detected neoplasms 

with 88.0% accuracy, 93.0% sensitivity, and 83.0% specificity, 

achieving higher accuracy compared with general endosco-

pists (88.0% vs. 73.0%, respectively).58 In a case-control diag-

nostic study of 1 million endoscopy images from more than 

84,000 patients, a real-time CADe system for upper gastroin-

testinal cancer achieved high accuracy (95.5%) in the internal 
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validation set, with comparable sensitivity to experienced en-

doscopists.59 Moreover, a CNN model differentiated between 

mucosal and submucosal invasive Barrett’s cancer with accu-

racy of 71.0%, sensitivity of 77.0%, and specificity of 64.0%.60

Real-time endohistologic visualizing systems provide histo-

logic inference during colonoscopy. A multicenter study ex-

amining the diagnostic accuracy of a CNN model in distin-

guishing neoplasms from non-neoplasms using endocyto-

scopic images found the model performed similarly to well-

trained specialists (96.0% vs. 94.6% accuracy; P = 0.141) and 

significantly better than general gastroenterologists (96.0% vs. 

70.4% accuracy; P < 0.0001).61 In April 2021, the U.S. Food and 

Drug Administration (FDA) approved an AI system that de-

tects colonic lesions (adenomas or carcinomas) during colo-

noscopy at a higher rate compared to standard colonoscopy 

(55.1% vs. 42.0%).62 

BARRIERS TO AI IMPLEMENTATION

Barriers to the adoption of AI in clinical practice include lack 

of standardized data, data-sharing limitations, educational 

barriers and physician hesitancy, regulatory hurdles, and cost 

barriers (Table 1).53 Heterogeneity of data sources used for 

training and validation (e.g., missing or irrelevant data) can 

decrease performance of the AI model in a real-world setting. 

In addition, the complexity of real-world conditions may not 

be adequately incorporated into AI algorithms and, thus, AI 

tools in practice may yield lower accuracies than reported in 

the literature.53 Rare clinical scenarios could also challenge AI 

models, as these scenarios will have less representation in 

training datasets. To address this shortcoming, high-quality, 

standardized datasets are needed to ensure geographic, tech-

nical, and patient diversity.9 The American Society for Gastro-

intestinal Endoscopy has proposed a professionally managed 

image library19; however, the requirements to ensure verified 

diagnoses for publicly available datasets are ambiguous. 

Physician distrust, technophobia, liability concerns, and a 

fear that AI may replace physicians could lead to hesitancy in 

the adoption of AI tools.53,63 In a survey of 487 pathologists 

from 59 countries, most respondents (72.0%) felt AI would 

have a positive effect on diagnostic efficiency, although the 

majority also thought the diagnostic decision-making process 

should remain predominantly a human task.64 The FDA regu-

latory approval process for software as a medical device is 

evolving, and the gastroenterology field will play a key role.65 

In January 2021, the FDA published the “Artificial Intelligence/

Machine Learning (AI/ML)-Based Software as a Medical De-

vice (SaMD) Action Plan.”66 As noted in the action plan, stake-

holder concerns for AI include the labeling for AI/ML-based 

devices and the need for manufacturers to clearly describe the 

data that were used to train the algorithm, the logic employed, 

the role intended to be served by its output, and the evidence 

of the device’s performance. Therefore, ensuring an alliance 

among physicians, clinicians, bioinformaticians, and regulato-

ry authorities to develop protocols and guidelines applicable 

to AI algorithms may be the first step to improving real-world 

practicality of AI.

Although data on cost effectiveness of AI in health care are 

limited, AI tools are expected to reduce overall costs due to re-

duction in endoscopic procedure burden.67 For example, us-

ing AI to classify diminutive colonic polyps in vivo, rather than 

sending samples for pathology, resulted in an estimated cost 

savings of $85.2 million in the United States.68 Nonetheless, 

substantial up-front investment may be required to incorpo-

rate AI into clinical practice.69 In the current fee-for-service re-

imbursement framework, the adoption of AI may be difficult; 

however, in a value-based model where improving quality at 

decreased costs is important, AI will likely become a valuable 

adjunct. It is possible that payers will cover a new drug or drug 

continuation only if an accurate assessment of a patient’s dis-

Table 1. Barriers to AI Implementation53

Barrier Comment

Lack of standardized data Heterogeneity of data sources used for training and validation

Data-sharing limitations High-quality datasets needed to ensure geographic, technical, and patient diversity

Educational barriers and physician hesitancy Physician distrust, technophobia, liability concerns, and a fear that AI may replace physicians

Regulatory hurdles Evolving regulatory approval process for software as a medical device; concerns with labeling for 
AI/ML-based devices

Cost barriers Substantial up-front investment may be required to incorporate AI into clinical practice; financial 
incentives provided through reimbursement fee codes will be needed

AI, artificial intelligence; ML, machine learning.
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ease activity using AI-based technology is available. Thus, pay-

er requirements for reimbursement will be key to the adop-

tion of AI in health care. Indeed, it is expected that AI-assisted 

optical biopsy will not achieve widespread use in clinical prac-

tice unless there are financial incentives provided through re-

imbursement fee codes.70 In recent studies, AI models with in-

surance claims data were capable of accurately predicting 

IBD-related hospitalization and steroid use within a 6-month 

period in patients with IBD, while AI models with gene-based 

data outperformed more costly biomarker analyses for pre-

dicting outcomes.71 Additionally, AI confirmation of investiga-

tor scoring without the need for central reading may lead to 

potential cost savings on drug development. Through consis-

tent evaluation of endoscopic disease severity, AI can relieve 

the time burden of extensive procedure assessments while 

also improving quality of IBD endoscopy and patient care, a 

theme congruent to the information burden borne by physi-

cians resulting from the dramatic increase in medical litera-

ture.72 As many AI studies are retrospective, or done in limited 

settings, more real-world data are needed.53 The widespread 

adoption of AI tools in clinical practice hinges on the ability to 

demonstrate improvements in efficiency and accuracy that 

generate sufficient return on investment. 

CONCLUSIONS 

Although challenges remain, research clearly supports the ap-

plication of AI in improving the quality of IBD diagnosis and 

management. AI-based tools can maintain consistent, objec-

tive, accurate, and accelerated clinical assessments, predict 

treatment responses, and improve the quality of endoscopy at 

all levels. Inevitably, AI models will continually improve as the 

technology becomes widely available and more data are in-

corporated in the algorithms. Therefore, the current challeng-

es in the diagnosis and management of IBD present ideal fu-

ture opportunities for transforming patient care using AI.
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